The (h, k)-Server Problem on Bounded Depth Trees

نویسندگان

  • Nikhil Bansal
  • Marek Eliás
  • Lukasz Jez
  • Grigorios Koumoutsos
چکیده

We study the k-server problem in the resource augmentation setting i.e., when the performance of the online algorithm with k servers is compared to the offline optimal solution with h ≤ k servers. The problem is very poorly understood beyond uniform metrics. For this special case, the classic kserver algorithms are roughly (1 + 1/ )-competitive when k = (1 + )h, for any > 0. Surprisingly however, no o(h)-competitive algorithm is known even for HSTs of depth 2 and even when k/h is arbitrarily large. We obtain several new results for the problem. First we show that the known k-server algorithms do not work even on very simple metrics. In particular, the Double Coverage algorithm has competitive ratio Ω(h) irrespective of the value of k, even for depth-2 HSTs. Similarly the Work Function Algorithm, that is believed to be optimal for all metric spaces when k = h, has competitive ratio Ω(h) on depth-3 HSTs even if k = 2h. Our main result is a new algorithm that is O(1)-competitive for constant depth trees, whenever k = (1 + )h for any > 0. Finally, we give a general lower bound that any deterministic online algorithm has competitive ratio at least 2.4 even for depth-2 HSTs and when k/h is arbitrarily large. This gives a surprising qualitative separation between uniform metrics and depth-2 HSTs for the (h, k)-server problem, and gives the strongest known lower bound for the problem on general metrics. ∗This work was supported by NWO grant 639.022.211, ERC consolidator grant 617951, and NCN grant DEC2013/09/B/ST6/01538. It was carried out while Ł. Jeż was a postdoc at TU/e. †TU Eindhoven, Netherlands. {n.bansal,m.elias,g.koumoutsos}@tue.nl ‡University of Wrocław, Poland. [email protected] 0 ar X iv :1 60 8. 08 52 7v 1 [ cs .D S] 3 0 A ug 2 01 6

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Infinite Server Problem

We study a variant of the k-server problem, the infinite server problem, in which infinitely many servers reside initially at a particular point of the metric space and serve a sequence of requests. In the framework of competitive analysis, we show a surprisingly tight connection between this problem and the (h, k)-server problem, in which an online algorithm with k servers competes against an ...

متن کامل

A sharp threshold for minimum bounded-depth/diameter spanning and Steiner trees

In the complete graph on n vertices, when each edge has a weight which is an exponential random variable, Frieze proved that the minimum spanning tree has weight tending to ζ(3) = 1/13 + 1/23 + 1/33 + · · · as n → ∞. We consider spanning trees constrained to have depth bounded by k from a specified root. We prove that if k ≥ log2 log n+ω(1), where ω(1) is any function going to ∞ with n, then th...

متن کامل

On the extremal total irregularity index of n-vertex trees with fixed maximum degree

In the extension of irregularity indices, Abdo et. al. [1] defined the total irregu-larity of a graph G = (V, E) as irrt(G) = 21 Pu,v∈V (G) du − dv, where du denotesthe vertex degree of a vertex u ∈ V (G). In this paper, we investigate the totalirregularity of trees with bounded maximal degree Δ and state integer linear pro-gramming problem which gives standard information about extremal trees a...

متن کامل

A Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy

Given two structures G and H distinguishable in FOk (first-order logic with k variables), let Ak(G,H) denote the minimum alternation depth of a FOk formula distinguishing G from H. Let Ak(n) be the maximum value of Ak(G,H) over n-element structures. We prove the strictness of the quantifier alternation hierarchy of FO2 in a strong quantitative form, namely A2(n) > n/8−2, which is tight up to a ...

متن کامل

Faster Deciding MSO Properties of Trees of Fixed Height, and Some Consequences

We prove, in the universe of trees of bounded height, that for any MSO formula with m variables there exists a set of kernels such that the size of each of these kernels can be bounded by an elementary function of m. This yields a faster MSO model checking algorithm for trees of bounded height than the one for general trees. From that we obtain, by means of interpretation, corresponding results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017